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Abstract
We present the spin dynamics of isolated donor electrons in phosphorus-doped silicon at low
temperature and in a high magnetic field. We performed a steady-state electron spin resonance
(ESR) on the sample with a dopant concentration of 6.5 × 1016 cm−3 in a high field of 2.87 T
(80 GHz) and at temperatures from 48 down to 1.8 K. As the temperature decreases below 16 K,
the resonance spectral line changes from the usual derivative form characteristic of absorptions.
Very long spin–lattice relaxation time T1 at low temperature gives rise to rapid passage effects
and results in a dramatic change in the line shape and intensity as a function of temperature. We
show that the numerical analysis based on the passage effects well explains the observed
spectral changes with temperature. The spin–lattice relaxation time T1 is derived by numerical
fit to the experimental data. We discuss the dynamic nuclear polarization of 31P nuclear spins
which shows up as asymmetric intensities of the hyperfine-split ESR resonance lines.

1. Introduction

Many magnetic resonance studies from the 1950s to 1970s
have been reported on the basic nature of phosphorus-
doped silicon (Si:P), such as the metal–insulator transition
with varying phosphorus donor concentration. Electron spin
resonance (ESR) experiments on the donor electron spin have
been performed extensively in a wide range of temperatures
and external magnetic fields. Here we report the result
of an ESR experiment performed under conditions of low
temperature and high magnetic field not previously attempted.
The original intent of this work was to obtain experimental

evidence for, or against, the working principle of Kane’s
quantum computer model [1].

Among the various architectures that have been proposed
to realize the quantum computation of many-qubits, the
silicon-based nuclear spin system proposed by Kane has been
pursued most intensively because of its compatibility for
implementation with mature silicon technology. In Kane’s
model, 31P nuclear spins located inside a silicon crystal with
regular spaces are used as qubits. For a P nuclear spin to play
the role of a qubit, the donor electron should be in the lowest
energy level of the trapped donor states and the electron spins
should be fully polarized. This requires temperatures lower
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than 0.1 K and magnetic fields higher than 2 T, where the
electron spins are more than 99% polarized.

Another requirement is that the nuclear spin coherence
time or spin–spin relaxation time should be longer than the
time necessary for a series of quantum gate operations. For the
investigation of such nuclear spin dynamics, it is desirable to
observe the nuclear magnetic resonance (NMR) of the isolated
P nuclear spin in Si:P. NMR experiments have been carried out
in a high field (B = 7 T) and at very low temperatures (T <

0.1 K) for highly doped Si:P, namely metallic samples [2, 3].
However, NMR experiments on isolated donor nuclear spin
have never been reported because the NMR signal is too weak
to be observed when the donor concentration is low enough
for the ions to be isolated from each other. Instead of direct
observation of the nuclear spin dynamics, ESR can be used to
obtain information indirectly.

In this work, the isolated donor electron spin system
is studied using steady-state ESR with field modulation at
temperatures as low as 1.8 K and in a high magnetic field of
2.87 T. The observed spectral line shape and intensity changed
drastically with temperature below 20 K. Since it is known that
the electron spin–lattice relaxation time T1 of P ESR for Si:P
varies by several orders of magnitude with temperature [4, 5],
we concluded that this drastic change of the spectrum is
due to the variation of the passage conditions of the field
modulation. We solved the Bloch equations numerically for
various passage conditions to simulate the ESR spectrum and
the result well explains the spectral changes. By comparison
of the experimental data and calculation, we could derive T1 in
our experimental condition, which has not been observed.

At temperatures lower than 10 K, the intensities of the
two hyperfine lines of the ESR spectra were slightly different,
implying dynamic nuclear polarization (DNP) of 31P nuclear
spins [6]. We could induce up to 10% asymmetry in the lines
by irradiating one of the lines with microwaves. Since this
corresponds to the nuclear polarization enhancement of 103,
direct observation of the NMR signal for the isolated donor
nuclear spin system will be possible if DNP is adopted.

2. Experimental details

The high-frequency ESR experiment was performed at 80 GHz
and at temperatures from 48 down to 1.8 K in a magnetic field
of about 2.87 T. A block diagram of the experimental setup
is shown in figure 1. The microwave source was a Gunn
oscillator that was controlled by the phase-locked loop of a
Millimeter-Wave Vector Network Analyzer (MVNA: ABmm).
The microwave signal was measured by an InSb hot electron
low-noise detector operating at 4.2 K. The signal was observed
with the external field modulation of frequencies ωm/2π =
330 and 590 Hz and strength Bm = 0.09 mT through the lock-
in output of the hot electron detector. A Si:P sample with a
donor concentration of 6.5 × 1016 cm−3 was set inside the
cylindrical waveguide. The size of the sample was 3 × 3 ×
0.3 mm3. In order to observe the absorption signal, a simple
transmission method was adopted without a cavity resonator.
For the initial setup of the equipment, ESR spectra were taken
for several different microwave frequencies around 80 GHz

Figure 1. Block diagram of the high-frequency ESR apparatus. The
microwave source is a Gunn oscillator that is phase-locked by a
Millimeter-wave Vector Network Analyzer (MVNA: ABmm). The
microwave signal is measured by an InSb hot electron detector
operating at 4.2 K. The coil for the field modulation is wound on the
cylindrical waveguide near the sample.

at 20 K in the slow passage condition. Then the operating
frequency was chosen so as to observe only the absorption
signal.

3. Results

The electron spin Hamiltonian describing the system of an
isolated trapped donor in a magnetic field B applied along the
z axis is

H = gμB BSz + AI ·S, (1)

where μB is the Bohr magneton and A the hyperfine coupling
energy. Here S and I are the electron spin and the 31P nuclear
spin, respectively, where S = 1

2 and I = 1
2 . Since the donor

electron behaves like the s-state in the hydrogen atom centered
at the P+ ion, there is no orbital moment causing g-shift and
therefore, g = 2. The resonance frequencies are then given by

ωres = gμB

h̄

(
B ± 1

2

A

gμB

)
. (2)

The ESR spectrum of the isolated P ion spin has two lines
separated by A/gμB, which is known to be 4.2 mT [7]. One
line comes from the electron spin tied with an ‘up’ nuclear
spin, and the other from a ‘down’ nuclear spin. Hereafter the
resonance line appearing at the higher field is referred to as the
H-line and the one at the lower field is referred to as the L-line.

The ESR spectra of Si:P obtained at ωm/2π = 330 Hz
and various temperatures are plotted in figure 2. The audio-
frequency phase for the field modulation was adjusted in such
a way that only the in-phase signal but not the 90◦ out-of-
phase signal (hereafter referred to as the out-of-phase signal) is
observed for T > 16 K, because this is the temperature region
satisfying the slow passage condition and it is well known that
the out-of-phase signal is unobservable in that condition. The
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Figure 2. Temperature dependence of ESR spectrum of Si:P (6.5 × 1016 cm−3). The microwave frequency is 80 GHz and the field modulation
frequency is 330 Hz. (a) and (b) are, respectively, the in-phase and out-of-phase signals with respect to the reference phase of the modulation.

in-phase and out-of-phase signals are shown in figures 2(a)
and (b), respectively. Both signals clearly show two peaks at
most of the measured temperatures, named above as the H- and
L-lines.

These two spectral lines become broad with increasing
temperature and finally disappear around 38 K. With further
increasing of temperature a single line appears. This is the
effect of the motional narrowing. Thermally activated trapped
electrons in the conduction band hop from one site to another.
If the inverse of the hopping time 1/τ becomes larger than
the angular frequency of the splitting of the two hyperfine
lines, the lines merge to a single narrow line by the motional
narrowing. Let us compare the observed spectrum in figure 2
with the spectrum in figure X,2 in the textbook by Abragam [8].
In the case of Si:P, the hyperfine splitting is 4.2 mT which
corresponds to 2δ � 7 × 108 rad s−1. Referring to the figure
in the textbook, the observed signals at 30.2, 34.2, 40.1, and
47.9 K correspond, respectively, to 4δτ = 100, 10, 1, and
10−2. Then the corresponding hopping times are found to be
τ = 7 × 10−8, 7 × 10−9, 7 × 10−10, and 7 × 10−12 s.

In the temperature region between 16 and 30 K (region
III), the line shape of the in-phase signal is an odd function
representing the derivative of the absorption line. This is
the line shape usually observed in ESR experiments using
field modulation satisfying the slow passage condition. By
contrast, in the temperature region below 11 K (region I), both
the in-phase and out-of-phase line shapes are even functions.
Temperature region II between 11 and 16 K is the transition
region. The in-phase signal is the mixture of even and odd
functions but the out-of-phase signal is purely even. Since
the out-of-phase signal is unobservable in the slow passage
condition, its appearance in regions I and II below 16 K means
that the slow passage condition is broken there. It is worth
noting that the out-of-phase signals are always even.

The temperature dependence of the signal intensity
Iexp(T ) is plotted in figure 3, together with the temperature
regions defined above and the typical in-phase signal shape of

Figure 3. Temperature dependence of the normalized ESR signal
intensity Iexp(T ) and the typical in-phase signal shapes for Si:P.
Modulation frequency is 330 Hz. Intensity is defined as the length of
the double-ended arrows in the figure. The square symbols represent
the signal intensity of the in-phase signals and the circles represent
the out-of-phase signals. The solid and open symbols are the
intensities of the L- and H-lines, respectively. The lines are the
results of the numerical calculation of the Bloch equations (see
section 4.3).

(This figure is in colour only in the electronic version)

each region. Region II is the temperature region below 16 K
where the out-of-phase signal starts to appear, and above 11 K
where it reaches a maximum. Intensities of the in-phase signal
were measured by the peak-to-peak values in region III, the
peak-to-peak or peak height in II, and by the peak heights in I
as shown by the arrows in the figure. Intensities of the out-of-
phase signal were measured by the peak height. The intensity
is normalized by the Brillouin function with a magnetic field
of 2.87 T and S = 1/2 to be compared later with the result of
numerical calculation.

When the distance between the trapped donor ions is not
much larger than their Bohr radius, the exchange interaction
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generates metallic P clusters of various sizes. The ESR
spectrum of the clusters is found at the center of the H- and L-
lines [9], because the directions of the nuclear spins interacting
with an electron spin are averaged out. The trace of such a
center peak is also found at low temperatures in figure 2. The
out-of-phase signals became very small in region I. The cluster
signal continued to grow as temperature decreased and became
comparable to the isolated donor signal below 6 K. At these
temperatures the out-of-phase signal heights were measured
after subtracting the average height of the cluster signal from
the peak intensity at ω = ωres. Below 6 K, a very broad
background signal was also observed in the in-phase signals,
which may result from tiny residue of the powdered 1,1-
Diphenyl-2-picrylhydrazyl (DPPH) test sample. We measured
the signal intensity of the background outside of the H- and
L-lines and used it to correct the signal.

It is noticed that the intensity of the L-line is always
slightly larger than that of the H-line at temperatures below
10 K by about 10% at most. In the experiment, ESR data were
taken by sweeping a field back and forth between the L-line
and H-line at a 30 min interval. This asymmetry of 10% will
be ignored in the following discussions until the DNP effect on
31P nuclear spins is discussed in section 5.

4. Passage condition and spectral change

Here we consider the dynamics of the spin packets producing
broad inhomogeneous spectral lines. Each resonance line has
inhomogeneous broadening of about 0.25 mT [10] due to the
hyperfine interaction with randomly distributed 29Si nuclear
spins (I = 1/2) with an abundance of 4.7%. The broadened
line shape function, h(ω, ωres), is centered at ωres given by
equation (2) and composed of the wavepackets centered at their
own resonance frequency ω. Phenomenologically, the spins
generating each wavepacket follow the Bloch equations,

dMx

dt
= −γ bz My − Mx

T2

dMy

dt
= γ bz Mx − γ B1 Mz − My

T2

dMz

dt
= γ B1My + M0 − Mz

T1
,

(3)

in the frame rotating around the z axis with the angular
frequency ω = B0/γ , when the direction of magnetic field
B0 + bz is parallel with the z axis in the laboratory frame.
Here, γ = gμB/h̄ is the gyromagnetic ratio and Mα is the
α component of magnetization M . The residual magnetic
field bz is the deviation from the resonance field and B1 the
radiofrequency (rf) magnetic field along the x axis direction.
In an experiment where a magnetic field modulation along the
z axis is used, another term is added to bz as,

bz = δω

γ
+ Bm cos ωmt, (4)

where δω/γ is the deviation of an applied field B from the
resonance field B0. Bm and ωm are the amplitude and the
angular frequency of the field modulation, respectively.

4.1. Passage condition

The effect of the passage condition on the observed spectral
line shape has been discussed, for example by Portis [11],
Weger [12], and Chiba et al [13]. Here we give a rough sketch
of the passage effect based on their discussion and provide an
introduction to the numerical solution of the Bloch equations
discussed in section 4.2.

Three important parameters, which specify various
passage conditions, are defined as,

εA = γ B2
1

Bmωm
εR = Bm

B1
ωmT1 εF = ωmT1. (5)

These parameters have the following meanings:

(1) The adiabatic passage condition for εA � 1 is satisfied
when angular velocity

	 = 1

B1

dbz

dt
(6)

of the effective field

Beff = bzk + B1i, (7)

where k and i are the unit vectors along the z and x axes
in the rotating frame of reference, respectively, is much
smaller than the Larmor angular frequency γ Beff. Here,
the adiabatic condition is most severe when the applied
field passes through the resonance field. Then from
equation (4), the adiabatic condition is given as γ B1 �
	 (=Bmωm/B1). This is equivalent to the condition of
εA � 1. In the present experimental condition, B1 ∼
10−3 mT, Bm ∼ 0.1 mT and ωm ∼ 2 × 103 rad s−1, and
εA is of the order of unity. The experimental condition was
not fully adiabatic but quasi-adiabatic.

(2) The rapid passage condition for εR � 1 is satisfied if the
time for the external field to pass through the resonance
region (resonance field ± microwave field B1) is much
shorter than T1. This leads us to εR � 1.

(3) The fast passage condition for εF � 1 is satisfied when
the modulation period is much shorter than T1. Rapid
and fast are the terms used by Weger [12]. Here εA is
temperature independent and εR � εF because Bm � B1

in this experiment. We call the condition for εR � 1 the
slow passage, following the convention, and refer to the
condition for εF � 1 the non-fast passage.

Portis [11] has proposed the following formula to include
the onset of the rapid passage effect when εR is still much
smaller than one,

{χ ′(ω)}linear in εR = π

4
χ0 ωεR cos φ h(ω, ωres) sin(ωmt − φ),

(8)
where χ0 is the static susceptibility, ω/γ the external magnetic
field, and φ = tan−1(ωmT1). The dispersion signal χ ′ is
expressed as a power series expansion of εR. The function
h(ω, ωres) is the inhomogeneous line distribution function
defined in the beginning of this section. At the onset of the
rapid passage φ � εR � 1, the motion of Mx appears in

4



J. Phys.: Condens. Matter 22 (2010) 206001 M Song et al

Figure 4. Timing chart of the modulation field and signal: (a) cosine
wave of magnetic field modulation; (b) free induction decay after
sudden passage; (c) simplified model of exponential decay with a
time constant of T2.

the out-of-phase signal. This fact is related to the reason
why the out-of-phase signal appeared only below 16 K in the
experiment. Equation (8) points out that the line shape of
the Mx signal is determined by h(ω, ωres) while that of the
My signal is given by the derivative of h(ω, ωres). However,
it should be noted that this anomalous behavior in the ESR
spectrum appears in the dispersion signal, Mx (ω).

Here we consider the spin dynamics for the case where
εR � 1 (the rapid passage), εF � 1 (the non-fast condition),
and εA � 1 (the quasi-adiabatic passage). Since the motion
of a spin follows the rapid passage, it is better to treat the
magnetization M rather than the susceptibility χ . The timing
chart of the modulation field is shown in figure 4. A cosine
magnetic field modulation given by equation (4) for δω = 0
is depicted in figure 4(a), where the vertical lines indicate the
moments when the spin packets are just in resonance. Mx (t),
shown in figure 4(b), appears at the moments of resonance,
and then decays with the time constant T2 when ωmT2 �
1. In this experiment, T2 � 10−4 s and thus ωmT2 < 1.
For ease of calculation, the decay function was simplified
to an exponential function with the decay time constant T2.
The lock-in output signal S is proportional to the Fourier
component of Mx (t) at ωm and given by the integration over
one period as

S = 1

2π/ωm

∫ 3π/2ωm

−π/2ωm

Mx (t) exp(iωmt) dt

= −|Mx(0)|
π

(ωmT2)
1 + e−π/ωm T2

1 + (ωmT2)2
(ωmT2 − i).

(9)

The in-phase and out-of-phase signals of the lock-in detection,
M IN

x and MOUT
x , correspond to the real and imaginary parts

of S, respectively. It should be noted that M IN
x increases as

(ωmT2)
2 and therefore MOUT

x is much bigger than M IN
x for

ωmT2 � 1.
When εR � 1 and εF � 1, Mx(0) is approximately given

by
Mx (0) � M0 � χ0 B, (10)

and the shift of the phase φ is given by,

φ = tan−1(−ωmT2). (11)

If T2 = T1 (the motional narrowing case at high temperature),
these equations are reduced to a formula similar to Portis’s
equation (equation (8)).

4.2. Numerical calculation of the Bloch equations

The numerical calculations of the Bloch equations are carried
out to simulate the lock-in output of M IN

α (ω − ωres) and
MOUT

α (ω − ωres) in three steps.

(1) First, we explicitly solved the Bloch equations in
equation (3) for the spin packets rotating with ω by using
the GNU Scientific Library to obtain the time evolution
of M(t) for a given δω defined by equation (4). The
frequency range of δω was set to ±6γ Bm so as to cover the
long tail of the Lorentzian function with the width, 1/T2.

(2) After steady-state solutions were obtained at t > 5T1,
their time averages over the period of the field modulation
2π/ωm were calculated for various T1 and δω as,

Mα cos ωmt(δω, T1)

≡ ωm

2π

∫ 2π/ωm

0
Mα(t, δω, T1) cos ωmt dt, (12)

where α = x, y. The cosine component corresponds to the
in-phase signal of the lock-in detector. The out-of-phase
signal is calculated by multiplying sin ωmt by Mα .

(3) The convolutions of the response function, equation (12),
of the spin packets with h(ω, ωres) are calculated to obtain
M IN

α (ω − ωres) and MOUT
α (ω − ωres) as

M IN
α (ω−ωres) =

∫ ∞

−∞
Mα cos ωmt(ω′−ω)h(ω′, ωres) dω′,

(13)
and

MOUT
α (ω−ωres) =

∫ ∞

−∞
Mα sin ωmt(ω′−ω)h(ω′, ωres) dω′.

(14)

The values of the parameters used in the calculation are
ωm/2π = 330 Hz (ωm = 2.1 × 103 rad s−1), Bm =
9.1 × 10−5 T (γ Bm = 1.6 × 107 rad s−1), and B1 = 1.1 ×
10−6 T (γ B1 = 2.0 × 105 rad s−1). The inhomogeneously
broadened line spectrum h(ω, ωres) is given by a Gaussian
shape distribution function,

h(ω, ωres) = 1√
2πσ

exp

(
− (ω − ωres)

2

2σ 2

)
, (15)

where σ is the width of the distribution. We determined σ

for this sample by fitting the spectrum in the slow passage
region around 16 K and the result is σ = 6.2 × 107 rad s−1

(σ/γ = 0.35 mT).
The spin–spin relaxation time T2 has been measured by

the spin echo decay time in the X-band pulse ESR [14, 15].
The relaxation rate 1/T2 at low temperature is determined
by the rigid-lattice value of the electron–29Si nuclear dipole
interaction that is independent of temperature and field.
Following these previous ESR studies, we chose T2 = T1, the
condition satisfied in the motional narrowing limit, if T1 <

10−4 s, and T2 = 10−4 s, the rigid-lattice value independent of

5
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Figure 5. Numerical calculation of the Bloch equations. Column I is the result for region I (T1 = 2 × 10−3 s and T2 = 10−4 s), column II for
region II (T1 = T2 = 5 × 10−5 s) and column III for region III (T1 = T2 = 10−6 s). Row (a) shows results for the time evolutions of Mα(t)
after t > 5T1 at δω = 0. Solid lines show Mx (t), dashed lines My(t), and dotted lines Mz(t). In (I-a) and (II-a), Mx (t) is vertically shifted by
−0.3 to clarify the figure. Row (b) shows Mx cos ωmt (solid line), Mx sin ωmt (dotted line), and My cos ωmt (dashed line) as functions of δω

for the regions I, II, and III, respectively. Row (c) shows M IN
x + 3.5M IN

y (solid line) and MOUT
x (dashed line).

T , if T1 � 10−4 s. It should be noted that the inhomogeneous
line width (∼6.2 × 107 rad s−1) is much larger than the line
width of the Bloch equations (2π/T2 ∼ 6 × 104 rad s−1)
and thus the wavepacket approximation is valid. Now the
only parameter left unknown in the Bloch equations is T1 and
therefore it is solved numerically as a function of T1. The
temperature dependence of the ESR spectrum is attributed to
the temperature dependence of T1(T ) since T2 is fixed at 10−4 s
for most temperature regions of the experiment.

M(t) was normalized by its value at t = 0 so that the
numerical solutions for M IN

α and MOUT
α could be compared

with the experimental results normalized by the Brillouin
function for B = 2.87 T and S = 1/2. The calculation usually
starts from the initial condition, (Mx , My, Mz) = (0, 0, 1)

and then the magnetization continues the time evolution until
it reaches the steady-state solution at t > 5T1. In fact, the
solution was almost independent of the initial condition.

Figure 5 shows the typical results of the simulations for
three different temperature regions. The results were obtained
with T1 = 2 × 10−3 s and T2 = 10−4 s in region I, T1 = T2 =
5 × 10−5 s in region II, and T1 = T2 = 10−6 s in region III.
Region I is the region of the rapid and fast passage condition
(εR � 1 and εF � 1), region II the rapid and non-fast passage

condition (εR � 1 and εF � 1), and region III the slow and
non-fast passage condition (εR � 1 and εF � 1).

Figures 5(I-a), (II-a), and (III-a) show the steady-state
time evolutions of M(t) at δω = 0 for the three passage
conditions. In the cases of I and II where the rapid passage
condition εR � 1 is met, M(t) rotates almost together with
the instantaneous effective field Beff when the sweep field of
modulation goes through the resonance point within ±B1, as
shown schematically in figure 4(b). Since εA � 1, the spin
motion does not exactly follow the adiabatic rapid passage, that
is, Mz is not completely reversed and a finite Mx remains after
the passage through the resonance point within ±B1. It should
be noted, however, that My � Mx for εR � 1. After the
sweep field passes through the resonance point, Mx (t) decays
with T2 together with a ringing signal at an instantaneous local
frequency, γ bz , given by equation (4). After the ringing dies
out, a finite Mx (t) remains, which is locked to the B1-field in
the rotating frame of reference and thus shows no ringing. The
difference between (I) and (II) is that εF � 1 (fast) in (I) while
εF � 1 (non-fast) in (II). Therefore, Mz recovers during each
cycle of the field sweep in (II) but not in (I). In the slow passage
condition (III-a), the time constants T1 and T2 are so short that
Mα(t) (α = x , y, z) traces the instantaneous equilibrium value

6
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(steady-state solution for the Bloch equations) at any instance
during the field sweep.

Figures 5(I-b), (II-b), and (III-b) show the response
functions to the Bloch equations, Mx cos ωmt(δω, T1) (solid
curves), Mx sin ωmt(δω, T1) (dotted curves), and My cos ωmt
(δω, T1) (dashed curves), calculated by equation (12) in each
region. It is worth noting that in all cases, Mx cos ωmt and
Mx sin ωmt are even functions for δω and My cos ωmt is an
odd function. Since My sin ωmt is negligibly small in all the
T1 range it is not shown. In region III, My cos ωmt is a main
signal and Mx cos ωmt is not small. However, Mx sin ωmt
is much smaller than the others because in the slow passage
region, M responds to the field modulation without a delay. In
region II, Mx sin ωmt starts to grow as predicted in section 4.1.
My cos ωmt and Mx cos ωmt are comparable to each other and
therefore the in-phase signal is composed of the absorption and
dispersion signals. In region I, My cos ωmt is very small and
the main signal is produced by Mx cos ωmt and Mx sin ωmt .
This is the reason why the line shapes of both the in-phase and
out-of-phase signals are even functions in region I.

Once Mα cos ωmt and Mα sin ωmt are obtained, the
observed in-phase signal M IN

α (ω − ωres) and out-of-phase
signal MOUT

α (ω − ωres) are calculated by equation (13) and
equation (14), respectively. Since the value of the convolution
of an odd function is much smaller than that of an even
function, M IN

y was multiplied by 3.5, which gives the best fit to
the experimental data. Figures 5(I-c), (II-c), and (III-c) show
the in-phase signals M IN ≡ M IN

x (ω−ωres)+3.5M IN
y (ω−ωres)

(solid curves) and out-of-phase signals MOUT ≡ MOUT
x (ω −

ωres) (dashed curves). In region III, M IN is almost an odd
function which is the derivative of h(ω, ωres) because the main
contribution, My cos ωmt , to the in-phase signal is odd. In
region I, M IN is an even function, h(ω, ωres) itself, because
Mx cos ωmt is even. In region II, M IN is a mixture of even
and odd functions. However, MOUT is always an even function
because the out-of-phase signal comes from only Mx sin ωmt ,
which is even. Row (c) in figure 5 shows well how the line
shapes change as the passage condition varies with T1.

In figure 6, T1 dependence of the signal intensities Ical(T1)

obtained from M IN and MOUT are shown. The intensities of
M IN s were obtained by peak-to-peak values in region III, peak
heights in region I and peak-to-peak values or peak heights in
region II while those of MOUTs were obtained by peak heights
in all regions. The vertical dotted lines indicate the points
where εF = 1 and εR = 1.

√
M IN(T1)2 + MOUT(T1)2 reaches

the maximum and M IN(T1) ≈ 1
2 M IN(εR � 1) near the points

where εF = 1 and εR = 1, respectively.

4.3. Simulation

Now we can simulate the experimental observation Iexp(T )

with the result of the numerical calculation Ical(T1) to
understand the change of the spectral line shape and intensity
with temperature, if the temperature dependence of the spin–
lattice relaxation time T1(T ) is given. In general, the unknown
parameter T1 is a function of temperature, field, and doping
concentration in ESR for Si:P. Although T1 has not been
measured in our experimental condition of B = 2.87 T and

Figure 6. T1 dependence of calculated signal intensities Ical(T1). The
solid line represents the out-of-phase intensity obtained from MOUT.
The dashed line represents the in-phase intensity from M IN. The
vertical dotted lines indicate the points where εF = 1 and εR = 1.

n = 6.52 × 1016 cm−3, it can be guessed from previous
works. Feher and Gere [4] pointed out that T1 is strongly
dependent on concentration above n = 1016 cm−3 but constant
below that at low temperature. They also presented the
temperature dependence of T1 measured below 4.2 K and at
B = 0.3–0.8 T for n = 7 × 1016 cm−3, which is quite
close to the concentration of our sample. The observed T1

is independent of magnetic field from 0.3 to 0.8 T and well
explained by the exchange coupling between the neighboring
phosphorus donors [16]. At high temperatures above 6 K, the
main mechanism of T1 relaxation is the Orbach process [17],
where T1 is almost independent of concentration and field.
The relaxation rate 1/T1 is proportional to e−/kT , where
 is the energy difference between the ground state and
the first excited state lifted by valley–orbit coupling [18].
The measured values of T1 at B = 0.17–0.33 T for n =
0.9–1.7 × 1016 cm−3 were presented by Castner [19] and
Tyryshkin et al [15]. Their values are consistent with each
other and independent of concentration and field as expected.
The temperature dependencies of the observed T1 due to the
phosphorus–phosphorus exchange (P–P exchange) interaction
and Orbach process are shown together in figure 7 (thin solid
line). Considering the fact that T1 relaxation due to the P–P
exchange interaction has no dependence on magnetic field, and
that due to the Orbach process is independent of concentration,
we may take the thin solid line in the graph to simulate the
spectrum expected in our experimental condition.

With T1(T ) obtained from the thin solid line and Ical(T1),
we can estimate Ical(T ). In figure 3, the calculated value
Ical(T ) (dotted lines) is shown together with the experimental
value Iexp(T ). The numerical result qualitatively well follows
the complicated temperature dependence of the experimental
data in the whole temperature range of the experiment.
Quantitatively, Ical(T ) is well fitted to Iexp(T ) at temperatures
above 11 K, while it is poorly matched with Iexp(T ) at
temperatures below 8 K. This means that the relaxation time
adopted for the simulation is far from the real value at low
temperature. Therefore, we took the inverse process, that is
we derived the real relaxation times that make the calculation
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Figure 7. Temperature dependence of the spin–lattice relaxation rate
1/T1 reported in the literature: the dashed lines are from Feher and
Gere [4], Castner [19] and Tyryshkin et al [15]. The thin solid line is
the data used for the initial simulation and the thick solid line is the
theoretical prediction of equation (16) for B = 2.87 T and
n = 6.52 × 1016 cm−3. The open circles (triangles) represent the
1/T1 values derived by comparison of the in-phase (out-of-phase)
signal intensities of Ical(T1) and Iexp(T ).

result fit best to the data. The values obtained in this way
are shown in figure 7 by open symbols. The open circles
(triangles) represent the 1/T1 values derived by comparison
of the in-phase (out-of-phase) signal intensities of Ical(T1) and
Iexp(T ). The relaxation rate determined in our experiment
is well explained by the Orbach process at high temperature,
but is larger than the value expected in the P–P exchange
interaction by two orders of magnitude at low temperature. The
spectral intensity predicted by these relaxation rates is shown
as the solid lines in figure 3.

Feher and Gere [4] reported also T1 observed at B =
0.32 T and T < 4.2 K for a sample with its concentration
lower than n = 1016 cm−3, below which the relaxation time
is independent of concentration (dashed line in figure 7). In
this concentration range, the main mechanism of T1 relaxation
is the direct phonon process for T < 2.5 T and the Raman
process for T > 2.5 T. Both processes are dependent on
magnetic field and the empirical formula [5] giving the total
relaxation rate as

1

T1
= a B4T + bB2T 7 + c exp

(
− 

kBT

)
, (16)

where the first term describes the direct phonon process, the
second term the Raman, and the last term the Orbach. The
dashed line fits to equation (16) with the fitting parameters,
a = 2.86 × 10−2 s−1 T−4 K−1, b = 1.95 × 10−5 s−1 T−2 K−1,
c = 0.91 × 109 s−1 and /kB = 122.5 K. With these fitting
parameters, we tried to estimate the relaxation rate expected
at 2.87 T, the field of our experiment. The theoretical result
shown in figure 7 by a thick solid line matches excellently with
our experimental data. It is clear that the T1 relaxation process
at low temperature is determined by the phonon process at
2.87 T. The P–P exchange interaction is dominant at low field
but the relaxation due to the phonon process surpasses that due
to the P–P exchange interaction around 1 T.

Figure 8. ESR spectra for Si:P at 6.9 K. Spectra (a) before and (b)
after microwave irradiation for 20 min.

5. Dynamic nuclear polarization

Figure 3 shows that the intensity of the H-line (open symbols)
is a little smaller than that of the L-line (solid symbols). This
asymmetry of the two lines become significant below about
10 K. Present ESR data were taken by sweeping a magnetic
field back and forth between the L- and H-lines every 30 min
under continuous microwave irradiation. Since the L-line
corresponds to the state

∣∣I = 1
2

〉
of a 31P nuclear spin and the

H-line to the state
∣∣I = − 1

2

〉
, we suggest that this asymmetry

of the two lines is due to the DNP effect. In fact, the DNP
has already been observed in Si:P at the applied field of
0.32 T [20, 21]. It has been discussed as resulting from the shift
of the spectral line of the cluster [22], and the DNP effect by
irradiation of visible light has also been recently reported [23].

In order to confirm our guess, the intensities of the
resonance signals obtained before and after microwave
radiation were compared. The result observed just after cooling
from the high temperature of 70 down to 6.9 K is shown in
figure 8(a). Here the external field was swept downward from
the H- to L-lines. The in-phase signal is shown by the thick-
line curve and the out-of-phase signal is shown by the thin-line
curve. Both the in-phase and out-of-phase signals show that
the intensities of the L- and H-lines are almost equal. Next,
the H-line was subjected to microwave irradiation for 20 min.
The ESR spectrum observed just after irradiation is shown in
figure 8(b). The intensity of both the in-phase and out-of-
phase signals in the L-line is about 10% larger than that in the

8
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H-line. This asymmetry corresponds to the nuclear
polarization enhancement of 103 from the thermal equilibrium
value of the polarization at T = 6.9 K. Recently, van Tol et al
reported very similar results at 3 K and 8.58 T [24].

In order to confirm the applicability of a 31P nuclear spin in
Si:P as a qubit of the quantum computer of Kane’s architecture,
investigation of the nuclear spin state of the isolated donor by
NMR experiment is needed. Up to now, it has been difficult to
observe the NMR signal directly because the P concentration
making isolated donors is too low. However, if the nuclear
polarization is enhanced by three orders of magnitude over the
thermal equilibrium value by the DNP, direct observation of
the NMR signal may be possible.

6. Conclusions

A high-frequency steady-state ESR experiment of the donor
electron spin in Si:P with n = 6.5 × 1016 cm−3 was performed
at a high magnetic field of 2.87 T and low temperatures from
1.8 to 45 K with external field modulation. In conjunction
with the ESR experiments for Si:P at a similar temperature and
in higher field (8.5 T) [25] that have recently been reported,
our work provides information on the spin dynamics of an
isolated P donor in a silicon crystal at low temperature and
in a high magnetic field. The ESR line shape and intensity
of Si:P changes drastically with temperature. We could
understand that this is due to the fact that T1 is strongly
dependent on temperature and the passage condition changes
accordingly. The numerical solutions of the Bloch equations
under various passage conditions well explain the experimental
data. The relaxation rate obtained from the comparison of the
experimental data and numerical calculation is quite consistent
with the phonon process that is strongly field dependent. The
intensity asymmetry in the hyperfine-split ESR peaks is a new
indication of the DNP effect in Si:P. To realize the highly
polarized nuclear spins by DNP and observe the NMR signal
from the nuclear spins of isolated donors remains for future
work.
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